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In recent years, the Cox regression model has been
used increasingly for analysis of censored survival data.
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while the individual was being observed, are utilized
along with the "complete" survival times in the Cox
regression model (6) and other recent methods for analy-
sis of survival data (7).

Table 1 presents a constructed set of survival data
which will be used for illustration in this paper. The data
set includes 30 subjects, of whom 18 have a complete
observation time with an endpoint, and 12 have a cen-
sored observation time without an endpoint. The values
of the variables presented (albumin, bilirubin and alco-
holism) apply to the beginning of the follow-up period.

THE ST'RVTVAL CT]RVE
The established way of presenting survival data is to

estimate the survival curve. If all of the survival times
are complete, i.e., without censoring, the survival curve
is estimated simply as the proportion of individuals in
whom the event has not yet occurred at each point of
time during the observation period. For survival data
which includes censored survival times, the survival
curve may be estimated by the method described by
Kaplan and Meier (8) and illustrated by examples from
Peto et al. (9). By including the censored survival times,
that method gives a usefii estimate of the probability of
not having the event (i.e., to survive) as a function of
time. Since this probability is a function of the probabil-
ity of surviving, all time intervals from start to a given
time t are denoted by the term cumulatiue suruiual prob-
ability, which is commonly designated S(t). The esti-
mated cumulative survival probability curve S(t) for the
total group of individuals presented in Table 1 is shown
in Figure 1 (top panel).

EAZARD
The more recent methods for analysis of survival data,

including Cox regression analysis (6-7, 10), are based on
the instantaneous lnzard (also called the force of mar-
tality) designated tr(t), which is the risk that the event
will occur for a subject in a small time interval (At) at
time t, given the subject did not have the event before
that time. Since the hazard I(t) is the derivative of the
cumuhtiue (integrated) lwzard. designated Å(t) (7), it can
be illustrated by the slope of the latter. Because the
relation Å(t) : -log"S(t) (7), the cumulative hazard may
easily be estimated by taking the negative natural loga-
rithm of the corresponding cumulative survival proba-
bility estimates.

The estimated cumulative hazard curve Å(t) of the
survival data in Table 1 is shown in the bottom panel of
Figure 1. A steep rise in that curve corresponds to a high
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T.lsr-n 1. Constructedset of survival data
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Subiect
no.

Survival time
(days) '

Death (1) or
censoring (O)

Albumin
(gbfliter)

Bilirubin
(pmolesfliter)

Alcoholism
[preeent (l)/absent (O)]

I
,
3

4
5

6

8
I

10

11

T2

13

14

15

16

T7

18
19

20
2t
22
23
24
25
26
27

28
29
30

t7
23

39
45
56
69
80
98

t20
134
L52
163
189
205
231
252
311
337
390
457

48t)
560
633
692
809
9r2

1,046
1,298
r,437
r,562

24
23
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2l
26
26
2t
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29
32
29
28
31

27

31

31

28
OJ

31

34
33
34
35

32
34
33

33
36
35

1

1

1

1

1

1

1

1

1

1

0
1

1

1

0
0
1

0
1

1

0
1

0
0
0
1

0
0
0
0

0
1

1

0
1

1

0
1

0

0
1

0
0

1

1

1

0

0
0
0
0
0
0
0

0

332
t57
182

77

92
r43
32

249
72

220
89

t52
43

82

39

63

98
4r
68
25

51

57
70
39
32

67
52

20
28

19
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Note.' the recordings for albumin, bilirubin and alcoholism apply to the beginning of the follow-up period.
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Frc. 1. Estimated cumulative survival probability S1t1 lXaptan-
Meier plot (8)l (top) and estimated cumulative hazard Å(t) (bottom)
for the survival data presented in Table 1. One can estimate the one
from the other using the relations: .ttt1 : -1o*g,t) and S(t) : 

"-'ito.

hazard, a slight rise to a low hazard. It appears from the
curve that the hazard is high initially and less thereafter.

A cumulative survival curve and the cumulative hazard
curve derived from it are summarizlng descriptions con-
cerning the studied total group of individuals. However,
there may be a wide variation in the survival time (and
hazard) between individual subjects. Although the cuwes
illustrate the variation among the subjects, they do not
allow identifrcation of who had a long survival (low
hazard) and who had a short survival (high hazard).

COVARIATES

To make such an identification possible or to allow
prediction of survival time in individual subjects, it is
necessary to identifu and utilize variables couaryirq wTth
survival. For example, it may be that serum albunin at
the starting point covaries with the subsequent survivai
time; i.e., in subjects with a low albumin, the suwival
time may be short (hazard high), and in subjects with a
high albumin, the survival time may be long (hazard
low). If the covariation (or correlation) between the level
of albumin and the survival time is large, the level of
albumin may to some degree "explain" the variation in
survival time or hazardbetween the subjects (11). In that

to
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may be an important covariate which may 'explain" a

difference in survival between the treatment groups.
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FIc. 2. Cumulative survival probability for the data presented in
Table 1 in subgroups defrned according to the Ievel of serum albumin:

-: 
albumin < 27 gm per liter; .. .. :27 gm per liter < albumin <

32 gm per liter; and - - - - : albumin > 32 gm per liter. The difference
in survival between the groups is marked, indicating that the level of
albumin to some degree can predict survival.

COMPARISON OF SUBGROUPS (STRATA)

Thus, the simplest way to identify prognostic co-
variates is to divide the subjects in subgroups (strata)
according to different levels of a given variable. For
example, if we divide the subjects presented in Table 1

according to the level of albumin (e.g., albumin < 28,28
to 32 and >32 gm per liter), it can be shown in Figure 2

that the survival curves for these three groups are mark-
edly different. In a similar way, one can show for the
subjects presented in Table 1 that the survival curves
are different in subgroups defrned according to the level
of bilirubin or the presence or absence of alcoholism.

Normally, a single variable, even if it shows a strong
covariation with survival, will not completely "explain"
survival. Usually, it is to be expected that more variables
in combination may "explain" survival to a higher degree.

It is possible to stratify according to more than one
variable at a time (3, 9). However, with an increasing
number of strata, the number of subjects in each stratum
will rapidly decrease to such an extent that the corre-
sponding survival cuwes will have too little "conftdence"
[the curves wiII have too wide confrdence limits (9)] to
be of any value. Hence, in practice, stratifred analyses
can only be performed with one or few variables at a
time. This puts a serious limitation on stratification.
However, the method may be used for a crude screening
to identify variables which should be analyzed furbher in
a Cox regtession model.

COX REGRESSION MODEL

The regression model proposed by Cox (6) is a multiple
regression model for analysis of censored surriival data.
Provided that the more strict assumptions (described
later) of this model may be considered fuIfrlle4 it may
be used to study and utilize the pattern of covariation of
many variables with the hazard. The Cox regression
model has this form:

\(t, z) : Io(t) exp(brzr + .... +b;z; -l- ... + bra).

Thus tr(t, z), the hazard at time t afber a defined
starting point [diagnosis, randomization etc. (being time
zero)l for an individual with variables z : (zt. . .zr-..2r)

Hnplror,ocy

is being "dependent on" or "explained" or "predicted" by
Io(t), the so-called underlying hazard at time t, and the
predictor variables zlto 4 (recorded at time zero), each
variable z1 being multipliedby a corresponding regression
coefficient b1. Here, exp stands for exponential function,
e.g., exp(bz) : eb'. The underlying hazard tro(t) may be
considered a "reference" hazard from which the hazard
tr(t, z) at time t of given subject may be obtained by
multiplication with a factor, namely the exponential
function of the subject's variables "weighted" by the
regression coefficients. Formally, the underlying hazard
lo(t) is the hazard at time t of an individual whose zis
are all zero. Usually, \o(t) is of little interest in itself,
since it may depend on the scoring of the variables (7).

Thus, the Cox model assumes that the hazards of any
two patients are proportional over time, i.e., the ratio
between the hazards is the same at any time t. This does
not preclude that the hazard may change over time.
Often, the hazard will be relatively high soon afber the
time of diagnosis and thereafber it may decrease as in
Figure 1. However, the Cox model assumes that changes
in the hazard of any patient over time will always be
proportional to changes in the hazard of any other pa-
tient and to changes in the underlying hazard over time.

The amount by which each predictor variable zi cort'
tributes to the prediction of the hazard \(t, z) of an
individual depends on the magnitude of the correspond-
ing term bizi. If the term is numerically big, then the
contribution is big; if the term is numerically small (close

to zero), then the contribution is small.
Consider a Cox model including only one variable and

having an underlyinghazard lo(t) of A yeats -t at a given
time t. If the variable zr has the value (score) 2 in one
subject and 1 in another subject, br being 0.5, then the
model assumes that the ratio between the hazards of the
two patients is

(A x eo.5,r)/(A x eo.sx1) : (so5'2)/(e05"): e05:1.65.

This ratio is assumed to be constant over time; it is
independent of the actual value A of lo(t) which may
change with the time t.

If bi had been -0.5, then the ratio would have been

(A x e{5'2)/(A x e{s'1): e{'5 - 1/e05:1/1.65:0.61.

Thus, higher values (scores) of a indicate higher hazard
(shorter suwival) if bi is positive and vice versa if bi is
negative. Ifbi : 0, then zi has no inlluence on the hazard.

FITTING A COX MODEL TO A SET OF DATA

The estimation of the b coeffrcients andthe underlying
hazard in the Cox regression model is complex. The
statistical and computational details are described in the
literature (6,7,12). However, to perform Cox analyses
using available standard computer programs (see later
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Tlsr,n 2. Seven Cox regression analyses of the data set presented in Table l.
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p
coefficient

ModeI
no. x'model d.f. p nodel R2

Variable(s)
included

Regreseion
coeffrcient

b

N.D.
lb/sE(b)l

1

2

3

4

1

1

1

2

30.99

2t.24

8.79

35.89

32.50

25.t3

37.O4

<0.0001

<0.0001

0.003

<0.0001

<0.0001

<0.0001

<0.0001

0.28

0.18

0.06

0.30

0.27

0.20

0.30

-0.42

4.44

1.55

-0.35
2.36

-0.39
0.79

3.88
1.14

-0.32
2.25
0.71

0.089

1.06

0.55'

0.10

1.11

0.094
0.64

1.06
0.59

0.11
:1.11
0.66

Albumin

Logro bilirubin

Alcoholism

Ahumin
Ingrcbilirubin

Albumin
Alcoholism

Logro bilirubin
Alcoholism

Albumin
Log,o bilirubin
Alcoholism

-4.7t <0.0001

4.t7 <0.0001

2.82

-3.43
2.12

-4.16 <0.0001
t.23 0.22

0.005

0.0006
0.03

3.66 0.0002
1.93 0.056

-3.07 0.002
2.03 0.04
1.08 0.28

" Models 1 to 3 include one predictor variable, Models 4 to 6 include two predictor variables and Model 7 includes three predictor variables.

absent. Serum bilirubin will be scored by logls of the
values in pmoles per liter as in a previously published
study (13). For example, if serum bilirubin is 92 pmoles
per liter, it will be scored as 1.98227 . . . . Later, it will
be shown if this scoring is adequate.

As in simple multiple regression analysis (14), vari-
ables may be selected according to certain procedures
(forward selection or backward elimination). To illus-
trate how this works (the details will be explained in the
following), Table 2 presents the results of seven Cox
analyses comprising all possible combinations of the
three variables in Table 1, i.e., three including only one
variable (Models 1 to 3), three including two variables
(Models 4 to 6) and one including aII three variables
(Model T).

OVERALL SIGNIFICANCE OF TIIE MODEL
(LTKELTHOOD RATrO TEST)

Estimation and signifrcance testing of a given Cox
model involves the concept of likelihood, meaning the
probability of the obsgrved data being "explained" by a
certain model.

The overall significance of each model shown in Table
2 is based on the ratio between the likelihood of a model
in which the variables show no covariation with the
survival time, the b coefficients all being zero, L(0), and
the likelihood of the model with the b coeffrcient(s)
obtained by the analysis, L(b) (7), the b coeffrcient(s)
being estimated in such a way that L(b) is as great as
possible. Thus, the estimated parameters (the underlying
hazard and the coeffrcients) of a Cox model are so-called
"maximum likelihood estimates" (7). The $eater the
L(b) or the less the lihelilwod ratin L(0)/L(b), the better
the model actually "explains'or fits the observed data
(7). The signifrcance of each model can be tested statis-
tically using the relation

12 model : -2 x loe; [L(O)/L(b)l: -2 x [o*L(0) - Iosl,(b)] : 2 ><

lloe.L(b) - lo*L(o)l

with degrees of freedom (d.f.) being equal to the number

of coefficients estimated in the model (7). While Iog"L(0)
is the same for all of the models, i.e., -52.319, L(b) and
hence the 12 model depend on the variable(s) included.
For example, for Model 1, log; L(b) is -36.825, and the
12 model : 2l-36.825 - (-52.319)l : 30.988 = 30.99 as
shown in Table 2. This high 12 value with 1d.f. is highly
signifrcant. Considering the three models in Table 1,
including only one variable (Models 1 to 3), it appears
that the highest 12 model is provided by Model 1, which
therefore has the greatest signifrcance of those three
models.

INFORMATION CRITERION FOR A COX MODEL

In Table 2 is also shown R2, which has been proposed
as a counterpart to the coeffrcient of determination of
simple multiple regression analysis (15, 16). R2 for a Cox
model may be estimated as (x2 model - 2 x p)/[-2 x
log"I,(0)1, where p is the number of variables in the model
(15). The subtraction of 2 x p is made to adjust for the
number of parameters being estimated (15, 16). As in
simple multiple regression analysis, R2 Iies between 0
and 1. If R'z is 0, the model is of no value. The closer R2
is to being 1, the more perfect the hazards of the individ-
uals can be "explained" by the model. Because of the
adjustment, R2 can never be exactly 1. In Table 2, the
model having the highest R2 is Model 4. Thus, Model 4
'explains" best the hazards of the individuals. However,
the value of R2 for that model is only 0.30, indicating
that the fit is far from perfect.

SIGNIFICANCE OF EACII INCLUDED VARIABLE

For each variable in each analysis, Table 2 presents
the regression coefficient b and the standard error of b
[SE(b)], which indicates the "confidence' of the esti-
mated b value and may be used to estimate confrdence
Iimits of b. As shown in the table, the signifrcance of
each coefficient can be estimated by comparing the nor-
mal deviate, N.D. : b/SE(b), with the standardized
normal distribution (7). Identical results are obtained by
comparing the square of the normal deviate, i.e., N.D.2
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with the 12 distribution with 1 d.f. {the so-called Wald
test [sometimes presented in computer printouts (16)]1.

The relative importance of the variables is given by
the numerical value of N.D. The greater the numerical
value of N.D., the more significant it is in the model.
Considering Model 7 in Table 2, the importance of the
variables decrease in this order: albumin; Io916 bilirubin
and alcoholism (the latter being insignifrcant).

RELATIVE RISK (IIAZARD) PREDICTED BY
EACII RDGRESSION COEFFICIENT

From the regression coeffrcient b of a variable, it is
possible to estimate relative risks (ratios between haz-
ards) attributable to various levels of that variable, all
other variables being unchanged. Considering the di-
chotomous variable alcoholism, Model 3 predicts the
relative risk of alcoholism to nonalcoholism being
e1.5sx r/er.55 

" o : 4.7 /l : 4.7.
In Model 4, a I gm per liter lower concentration of

serum albumin (e.9.,29 gm per liter relative to 30 gm per
liter) will be associated with a relative increase in hazard
of e_0.35x2e/e_o.Bi xs0 _ e_0.s5x(_r):1.42 times. The latter
expression shows that the relative risk being associated
with a 1 gm per liter lower albumin is independent of the
absolute level of albumin. A 3 gm per liter lower albumin
is associated with a 1.42 x 1.42 x L.42 : 1.423 : 4.26
times higher risk, and a 2 gm per liter higher albumin is
associated with a halved risk [1/(1.42 x 7.42) : l/1.422: 1.42-2: 0.50], everything else being unchanged.

Looking at bilirubin in Model 4 in the same way, a
doubling in values (e.g., 100 compared to 50 pmoles per
liter) corresponding to an increment in logls bilirubin of
0.3 (2.0 compared to 1.7) is associated with a risk being
e2'36x2'0 f e2'36 

x 1'7 - e2'36 
x 0'3 : 2.0 times higher or doubled,

everything else being unchanged. It is possible to obtain
relative risks attributable to more variables in combina-
tion by multiplying the relative risks attributable to each
variable in the model. The same result may be obtained
more simply as the ratio between the exponential func-
tions of the prognostic indices (see later) corresponding
to the two sets of values of the variables considered.

The limitation of the relative risk in itself is that it is
just relative and does not give an absolute estimate of
the survival time or probability of surviving a given span
of time for a given subject.

SELECTION OF VARIABLES

With the forward selcctian method, the model is built
up step-wise by including at each
the largest reduction in the like
lently the largest increase in the
first step, albumin (Model 1 in Table 2) would be in-
cluded because this variable gives the highest significant
12 model of all possible models with one variabldModels
1 to 3). In the next step, logro bilirubin would be added
(Model 4) because this variable increases the y2 model
signifrcantly (35.89 - 30.99 : 4.90 with 1 d.f., p < 0.05)
in contrast to alcoholism (Model 5), which only gives an
insignifrcant increase in the 12 model (32.50 - B0.gg :
1.51 with 1 d.f., p > 0.2). (Here, d.f. is the difference
between the number of estimated coefficients in the

Hnpltor,ocy

models being compared.) Inclusion of alcoholism in a
model comprising albumin and lo916 bilirubin (Model Z)
does not lead to a significant increase in the 12 model
(37.05 - 35.89 : 1.15 with 1 d.f., p > 0.2). Therefore,
Model 4 would be the frnal model if the forward inclusion
technique was used.

Utilizing the ba,ckward elimination method, one starbs
with a model which includes all variables, and then
insigaifrcant variables are removed step-wise from the
model by excluding the most insignifrcant variable at
each step until each remaining variable contributes sig-
nifrcantlyto the model. Thus, one would start with Model
7 and then remove alcoholism because this variable is
insignificant. This would lead to Model 4, which would
be the final model because both variables (albumin and
logls bilirubin) are statistically signif.cant.

For the data in Table 1, forward selection and back-
ward elimination of variables lead to the same frnal
model. In more complex analyses, including many vari-
ables, the two methods of selection of variables may lead
to slightly different frnal models. Normally, the selection
of variables should not be made solely according to
automatic rules. The selection process should be guided
by the investigator taking into account, among other
things, the a priori prognostic value of each variable
considered.

INFLUENCE OF COVARIATION BETWEEN
PREDICTOR VARIABLES

In general, the pattern of covariation between the
predictor variables will, to some extent, determine which
will be signifrcant in the frnal Cox regression model. It
is not always possible from the results of univariate
analyses (including only one variable, e.g., Models 1 to 3
in Table 2) to predict which variables will be significant
in a Cox regression model, including more variables (17).
lf two variables, each of which has shown a signifrcant
covariation with survival time by univariate analysis, are
strongly intercorrelated, and therefore holding nearly the
same information, only one of them may be significant
if both are included in the model. On the other hand, a
variable which has shown no signifrcant covariation with
survival if included as the only variable may be signifr-
cant if included together with other variables. The reason
for this is that multivariate-in contrast to univariate-
statistical analyses can adjust for the i-nfluence (covar-
iation) of other variables with the variable in question.

Furthermore, the magnitude of the regression coefE-
cient and the degree of significance of each included
variable depend on which other variables are also in-
cluded in the model as shown in Table 2. For example,
by comparing Models 3 and 5, it appears that alcoholism
is signifrcant if it is the only variable in the model (Model
3);but if albumin is also included (Model5), the influence
of alcoholism is no longer signifrcant. Furthermore, the
value of the b coefficients changes from the models,
including one variable to the model having both variables
[b for albumin changes from -0.42 (Model 1) to -0.39
(Model 5) and b for alcoholism changes from 1.55 (Model
3) to 0.79 (Model 5)1. The reason for these differences is
the covariation between the predictor variables (in this
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case between albumin and
is adjusted for in the Cox
pendent association of eac
presented in the estimated model.

If, h
dictor
mated
that the results may no longer be interpreted in a simple
meaningful way. The solution will often be to include in
the model only one variable from the highly correlated
set (14).

CHECKING OF MODEL ASSUMPTIONS

Prentice (pp. 87-98) (7) and Refs. (20) and (21). Here,
the main principles will be illustrated.
. The 

-most 
important issue is insuring that the assump-

tion of proportional hazards is not violated. Consider
two patients (A and B), who for a given predictor variable
have the values za and zB, respectiveiy, the difference
za-zsbeing equal to d. If the regression coefficient of
the variable in question is b, the Cox
the ratio between the hazards of the
},s(t) should be eb " d, keeping the

mulative (integrated) hazards would be the same, i.e.,

^A(t)/^B(t) 
: eb'd or equivalently log"År(t) - log"Ås(t) : b x d.

Thus plots of the logarithm of the cumulative hazards

otherwise not included. The defrned strata should be
equally spaced, i.e., the spacing d between the means of
the scored values from one stratum to the next should

ables constant. If the curves are approximately parallel
and equidistant vertically with a distance of about b x
d, then the assumption of proportional hazards may be
considered to be met for that variable.

To check the final model (Model 4 in Table 2), such
analyses have been performed where one of the variables
(albumin or logls bilirubin) have been included only as a
stratified variable in equally spaced strata and the other
maintained unchanged in the model. The resulting plots
of the logarithm of the cumulative hazard are shown in
Figures 3 and 4. The fit seems to be quite good for

LOG
lr

5 gm per liter apart, then d : 5. Since b for albumin is -0.35 (Model 4
in Table 2), then b x d : -0.35 x 5 : -1.8. In view of the limited
number of subjects, the assumption of proportionality, i.e., vertical
equidistance of about 1.8 units between the curves, does not seem to
be grossly violated.

.;'

Frc.4. Plots ofthe logarithm ofthe cumulative hazard ttog*i(t)l for
a Cox model including lo916 bilirubin in three equally spaced stiata:

- 
: logro bilirubin - 1.7; ... - : 1.7 < lo916 bilirubin < 1.9; and

logro bilirubin > 1.9 and albumin from the data in Table 1.
The plots are made for the mean of albumin (2g.5 gm per liter). Since
the means of logls biffuubin values for each stratum are about 0.84
apart, then d : 0.34. Sincc be for Iogro bitirubin is 2.36 (Model 4 in
Table 2), then b x d: 2.36 x 0.34 : 0.8. In view of the limited number
of subjects, the assumption of proportionality, ie., vertical equidistance
of about 0.8 between the curves, does not seem to be grossly violated.

albumin and somewhat poorer for logls bilirubin. How-
ever, in view of the limited number of subjects included
in the analysis, a very good frt may not be expected.
Thus, the hypothesis of constant vertical differences
between the curves cannot be rejected with this small set
of data. To illustrate what would have happened if bili-
rubin had been scored as pmoles per liter (without loga-
rithmic transformation), Figure 5 shows that with that
kind of scoring the cuwes do not seem equidistant.
Therefore, the logarithmic scoring of bilirubin seems the
preferable alternative in this case. Other transformations
may be necessarJr in other cases.

The assumption of proportional hazards may also be
tested by the goodness of frt test by Andersen (20) or
other similar tests (21).

Sometimes, it may not be possible to obtain propor-
tionality. One reason may be that an important predictor
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Fto. 5. Plots of the logarithm of the cumulative hazard [o*,t(t)] for
a Cox model including bilirubin in three equally spaced strata: 

- 
:

bilirubin < l00pmolesperliter; .... :100 pmolesper liter<bilirubin
< 200 pmoles per liter; and - - - - : bilirubin > 200 pmoles per liter
and albumin from the data in Table 1. The plots are made for the mean
of albumin (29.5 gm per liter). Since b for bilirubin without logarithmic
transformation would be 0.0063 and since the means of the bilirubin
values for each stratum are about 100 pmoles per liter apart, then d :
100 and b x d: 0.0063 x 100 : 0.6. In contrast to Figure 4, the curves
do not seem equidistant vertically with a distance of about 0.6, i.e., the
assumption of proportionality does not seem to be fulfrlled.

variable is missing from the analysis. The solution would
then be to include that variable if possible. Another
reason for lack of proportionality may be that some
predictor variables interact, i.e., the association of one
predictor variable with the hazard depends on the value
of another predictor variable. Interaction between pre-
dictor variables may be identified by different methods.
The most widely used approach is to include multiplica-
tive terms in the model (14). For example, if the associ-
ation of albumin with hazard depended on whether the
individuals were alcoholic or not, this could be tested in
a model including the following three variables: albumin;
alcoholism, and the multiplicative term albumin x alco-
holism (the product of the scorings used). Because the
correlation between the interaction variable and its com-

high, prob-
the regres-
ould not be

feasible to investigate all possible interactions between
the predictor variables. One should limit the interaction

UTILIZATION OF A COX REGRESSTON MODEL
TO ESTIMATE PROGNOSIS IN I\TEW SI.]B.IECTS

PROGNOSTIC INDEX (PI), ITS ESTIMATION
AND INTERPRETATION

Estimation of PI for a given subject is the frrst step in
estimating the prognosis of that subject. Considering
Model4 in Table 2 as the frnal model, the PI for a subject
with a serum albumin of 30 gm per liter and a serum

bilirubin of 50 pmoles per liter, the PI is estimated as
follows:

PI : -0.35 x 30 + 2.36 x log1e50: -0.35 x 30 + 2.36 x 1.7 : -6.b.

It appears that higher levels of albumin will lead to
lower levels of the frrst term and thus lower levels of pI
because the regression coefficient for albumin is negative.
In contrast, higher levels of bilirubin will lead to higher
values ofthe second term and hence higher values of PI
because the regression coefficient for bilirubin is positive.

Higher values of PI mean higher hazard or shorter
suwival, lower values mean lower hazard or longer sur-
vival. Differences in PI for two patients can be used to
estimate their relative risk. A PI being 0.7 higher corre-
sponds to a doubled risk (e0'7 per lite: : 2). A PI being
0.7 lower corresponds to a halved risk (e-0'7 = 0.5); except
for this, PI cannot be interyqeted in a meaningful way
by itself, since it depends on the scoring ofthe variables.

The estimation of PI can be simplified markedly by
using a pocket chart (22) as presented in Table 3 in
which the regression terms for various values of the
variables have already been calculated for Model 4 in
Table 2. For example, for a bilirubin of 60 pmoles per

lTlsr,r 3. Pocket chart for easy estimation of PI
corresponding to model 4 in Table 2

Hnperor,ocv

Note: for each variable, only one number should be used. If a
patient has values between those in the table, interpolation should be
used.
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Tasln 4. Ranked individual estimated values of PI based on
model 4 in Table 2

Subiect no. Estimated PI

-t.7
-2.4
-2.5
-2.7
_oo

-3.9
-4.0
-4.6
-5.0
-5.5
-5.7
-5.8
-5.9
-6.0
-6.2
-6.3
-6.6
-6.6
-7.2
-7.4
-7.5
-7.5
-7.6
-7.6
-7.6
-7.9
-8.5
-8.5
-9.2
-9.2

liter, the regression term would be logls 60 x 2.36 : 1.778
x 2.36 : 4.2. In Table 3, this has been multiplied by 10
to obtain the integer 42. Later, the result is divided by
10 and thus a precision of PI of one decimal is obtained.
By using a pocket chart of this kind, it is possible to
estimate PI by very simple algebra. For example, for the
aforementioned subject, PI may be estimated simply as
(40 - 105)/10 : -6.5 or the same as before.

Table 4 presents the PI according to Model 4 for each
of the 30 subjects in Table 1. The PI values ranging from
-1.7 to -9.2 arc ranked according to decreasing PI, i.e.,
increasing predicted survival. The ranking is of course
not the same as in Table 1, although the subjects with
Iower PI (Table 4) tend to have longer observed survival
times (Table 1) and vice-versa.

Thus, the PI for a subject defines his/her place within
the prognostic "spectrum" defrned by the model. In the
following, it will be shown how the information in PI
may be utilized furbher in the estimation of a survival
curve, the probability of surviving a given time and the
median survival time for the subject.

SURVIVAL CURVE ESTIMATE FOR THE
INDTVIDUAL SUBJECT

From a given Cox model, it is possible to estimate the
cumulative survival probability or so-called survivorship
function S(t, z) corresponding to any combination of the
variables z: zt-..2n. Discussing hazard previously, the

equation L(t, z): -log"S(t,z) was presented. Solving for
S(t, z) this becomes S(t, z) : g-Å(t''). Following from the
assumption of pr
: Åo(t) ePI. Since
the whole range
observation time,
to estimate lt(t, z) and then S(t, z), which is the estimated
survival curve corresponding to a given value of PI or
combination of variables z (13,L7,23-24).

Using Model4 in Table 2, the estimated survival curve
for each of the two subjects with given values of albumin
and bilirubin is shown in Figure 6.

Figure 7 (top panel) shows survival curves correspond-
ing to different values of PI. The middle panel of Figure
7 shows the cumulative hazard corresponding to the same
values of PI. As a consequence of the assumption of
proportionality of the-Cox model, both the slope (the
hazard) and the level increase with the same factor el :
2.718, from one curve to the next above. In the bottom
panel of Figure 7 showingthe logarithm of the cumulative
hazards, the curves are equidistant verbically with a
di§tance of I (1og2.718 : 1) between the curves. The
shape of these curves is exactly the same; they are all
based on the survival structure of the whole group of
subjects (as are the curves in the upper and middle parts
of heir level being
de y,thelogarithm
of o5Åo1t;, which
is equal to log.Å(t) for a PI of zero, can be illustrated by
a curve having exactly the same shape as these curves,
but lying 4 units higher than the curve for a PI of -4.

Methods for deriving point-wise confidence limits for
estimated survival curves are given in Ref. (13).

PBOBABILITY OF SURVIVING A GIVEN TIME

For given values of Åo(t) correspond.ing to a given span
of time, e.g. 1 year, it is possible to estimate the value of
S(t, z) corresponding to various values of PI (13, 17,23).
The estimation is performed using the same equations
as in the previous section, the only diEference being that
here Åo(t) is kept constant for each curve, whereas PI is
allowed to vary. Figure 8 has been constructed in this
way. The reverse sigmoid shape of the curves is a con-

1353

CUT'LETIVE SUTUIVEL PROBEBILITY
l.o

FIc. 6. Estimated survival curves based on Model 4 in Table 2 for a
subject having an albumin of 29 gm per Iiter and a bilirubin of 220
pmoles per liter (logro bilirubin:2.342) 1-) and a subject having an
albumin of 33 gm per liter and a bilirubin of 20 pmoles per liter (log1s

bilirubin: 1.3) (....).
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GUn LtfIUE SUIUIU0L PI0B0BILITY sequence of the exponential functions involved- tr'rom ar'015q,-- glven value of PI on the abscissa, one can read the
,.'l\il-+t-, t-.,__ estimated probability of surviving 0.5, 1 and 2 years on

i -: -J------, the orfinate. For exam le, for a subject having a PI of
o. o.l ]: t--, .I !------------ -ti, the probability of surviving 0.5, 1 and 2 years would

be 0.76, 0.45 and 0.08, respectivelv.
O.a{ \: i L-----'

I L, i.- : ESTTMATED MEDTAN suRvIvAL TrME
: Another useful way of interpreting PI is to estimate

o. o I 1- r"" , i------i-------------i---. the median survival time for the subject. This is the span0 I ? 3 t of time the subject will survive with 50% probability. ForYEtts a subject having the variables z giving a certain pI, the
median survival time is estimated as the time t for which

curtLerrvE ,.ezero tle estimated-survival c.r*e S1t, z) reaches 0.5 (13, 17,

.,r "';tT3,11"'i?H?i1"ffiåHf'lt:$,:L'L*.TåilT;

..1 I t 9. Each pojnt of the curve is obtained in the
aol I following way: for a value of PI, a survival curve is
l'l estimated as previously described. The time t where the

curve reaches a cumulative survival probability of 0.5 is
the estimated median survival time corresponding to that
PI. This is repeated for the whole range of possible PI
values to obtain the whole curve. Since these estimations
have not yet been included in the available standard3 -.-!-- computer i"ogrr*", they have to be done by the inves-YEtrs tigator.

From a given value of PI on the abscissa in Figure g,
one reads the corresponding value of the estimated me-
dian survival time on the ordinate. For example, for a
subject having a PI of -6, the estimated median survival? time would be 0.9 years. Since for PI values less than

o1 Jjl:---;"'-'-r-----i------:------ -7.8 the estimatcd suwival cunes do not reach 0.5, one
-zlli..,_--}------- can only say that the estimated median survival time

will be longer than 4.3 years for such low values of P[.-1lii! There is- a close correspondence between Figures T

-G# (upper part), 8 and 9. They illustrate the predictive
_" I information of the same Cox model in complementary

l'_

Ola3awa}s.
YEtts TIrE cox MoDEL rN coNTRoLLED cLrNrcAL

Ftc. 7. Estimated survival curves (top), estimated cumulative haz- TRIALS
ards (middle) and logarithm of estimated cumulative hazards (bottom)
based on Model 4 in Table 2 for fifferent values of the pI: pI -
-4;....PI:-5;----PI:-6,- --PI:-7;and--PI:-8. ADJUSTMENT FOR IMBALAIYCE

In controlled clinical trials, randomization is per_
formed with the purpose of eliminating bias in treatment
assignment. This will tend to lead to comparable treat_

PROBTEILITY OF SURVIVIIIG X YECiS
l.gra SURVML TIE (yEtnS)
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. FIG. 8. Estimated probability of surviving 0.5, 1 and 2 years by pl
based on Model 4 in Table 2.
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FIc. 9. Estimated median survival time by PI based on Model 4 in
Table 2.
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ment groups. However, random allocation does not guar-
antee complete balance. Imbalance in variables being
known or suspected to covary with survival (prognostic
variables) may occur randomly. If this happens, the
"spontaneous" survival may be different between the
treatment groups. Therefore, to insure a fair comparison
between the studied treatments, imbalance in prognostic
variables should be detected and adjusted for (25-29;
Christensen, E. et al., G ast roente r ola gy 1986; 90: 508-509,
Correspondence). This can be done by performing a Cox
regression analysis in which the prognostic variables are
included together with the treatment variable (13). Even
slight imbalance may have a marked influence on the
result if the prognostic variable is very important (13,
30). In such cases, there may be a substantial difference
in the estimated therapeutic effect as obtained with and
without adjustment for imbalance in prognostic variables
(13, 30).

To illustrate these points, consider the treatment al-
location data in Table 5 to supplement the data in Table
1. The Kaplan-Meier survival curyes for the two treat-
ment groups shown in Figure 10 are not significantly
different, although the survival in the prednisone group
tends to be longer than in the placebo group. Performing
a Cox regression analysis, including the treatment vari-
able together with albumin, logro bilirubin and alcohol-
ism, the model presented in Table 6 is obtained. In this
model, the treatment as well as alcoholism are also

Tlsr,n 5. Constructed treatment allocation data to
supplement the data in Table 1

Subiect Treatment
no. [prednisone (O)/placebo (f)]

FIG. 10. Unadjusted survival curves for prednisone 1-) and pla-
cebo (....)-treated subjects based on the treatment allocation data in
Table 5 in conbination with the survivdl data in Table 1. The difference
in survival between the two groups is not significant.

signifrcant. Figure 11 shows the estimated survival curves
for the two treatments adjusted for the influence of
albumin, logro bilirubin and alcoholism. The difference
in survival is more marked and statistically signifrcant.
The main reason for this effect is that alcoholism is
slightly more frequent in the prednisone (53%) than in
the placebo group (40%), this difference being adjusted
for by the Cox model.

Although a powerful tool, statistical adjustment for
the influence ofprognostic variables cannot replace ran-
domization. In general, only a smaller part of the yaria-
tion in the hazard between the individuals can be "ex-
plained" by the variation in the predictor variables in-
cluded in a Cox regression model. A number of unknown
not yet identified variables may be associated with the
hazard. Still, the only way in which such variables may
be modeled as being distributed equally between the
treatment $oups is randomization (31). Since, as men-
tioned previously, randomization does not guara:rtee
complete balance, it is important to continue the search
for variables by which prognosis may be 'explained"
more precisely.

QUAIYTIFICATION OF TITERAPETITIC EFFECT
IN TIIE INDIVIDUAL SI]BJECT

In a Cox regression model, including the treatment
variable together with the prognostic variables, it is
possible to estimate for a given subject the PI for each
of the treatments (13). Each of the PIs can be translated
to an estimate of the median survival time as described
By subtracting the times for the treatments to be com-
pard, the therapeutic effect can be expressed as the time
(in months or years) by which survival may be prolonged
(or shortened) by the one treatment compared to the
other (13).

VARIABLES ASSOCIATED WITH
THERAPEUTIC EFFECT

Just as almost any biological variable shows a spec-
trum of variation between individuals, the relativehazard
under various treatments may show a similar variation,
dependingon the characteristics ofthe subject. To iden-
tifu variables influencing the magnitude of the therapeu-
tic effect, one may use a Cox model which allows for the
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Tlsr.r 6. Final Cox regtession analysis of the data in Table 1 supplemented with treatment allocation data from Table 5

1t nodel d.f. p model Bt Variables included Regreaeion coefficient b SE(b)
N.D. p

lb/SE(b)l coefficient

<0.0001 Albumin
Logro bilirubin
Alcoholism
Treatment

-0.34
3.61
1.86
2.18

0.11
r.24
0.78
0.78

-3.01
2.91
2.39
2.78

<0.0001
<0.0001

0.005
0.0006

01e31
YETTS

FIG. 11. Adjustcd estimated suwival curves for prednisone (-1
and placebo (. . . .)-treatcd subjecLs based on the Cox model in Table 6
for mean values of albumin, logro bilirubin and absent alcoholism (p :
0.006).

treatment given, other predictor variables characterizing
each patient and the interaction between the treatment
variable and the other variables (13, L7,32,33).

One useful way to design such a model is in addition
to the treatment variable (e.g., scored as 0 for Treatment
A and 1 for Treatment B) to include two regression terms
for each of the other predictor variables, one for each
treatment (17 , 23). For each pair of regrcssion terms, the
predictor variable should be scored by its usual scoring
in the term corresponding to the treatment given to the
subject and by zero in the other term. This leads to
estimation of two regression coefficients ba and bs for
each variable. If the difference between the two coeffi-
cients is signifrcant by comparison with its standard error
(estimated from the variance-covariance matrir of the
coefficients), one may assume that the treatment effect
depends on the value of the variable, which should be
considered "therapeutic" and maintained in the model
with one coefficient for each treatment (L7, 23)- Otber-
wise, one coefficient b; oommon to the two treatmeuts
may be used instead.

The standard error of the diEerence b^ - bs, i.e., SE(br - h) :
ffi var meaning the variance
and covar the covariance being ohained from the variaDæari-
ance matrir of the b coeffrcients (rhich is different from hc vari-
ance-covariatrce matrix of the predictor variables). If tåe ratio
l(b^ - bB)l/SE(b^ - b") is higher thåD 1.96, be and bg are consid-
ered significantly different at the 5% level (17, 23). If, for s-.-ple,
br : 1.4, t» : 0.6, var([^) : 0.7, var (bs) : 0.4 and covar(b1bs) =
0.5, then lG^ - bg)l/SE(b^ - bs) :0.8/0.32 = 2.5, and heuce br and
bs are significaDtly different. These estimations are not included in
the available standard computer progrnm hrt need to be done by the
investigator. The variance-covariance matrir of the b coefficients
can be obtained from the computer printouts.

The signifrcance of the interaction between a variable
and the treatment may also be tested using the likelihood

ratio test (described previously) comparing the model,
including both br and bs with the model having only one
coeffrcient b for the variable in question.

For a model including one or more 'therapeutic" vari-
ables, the PI may be estimated for each of the treatment
alternatives as described previously. The differenc€ PIt..e
- PL.." may be considered an estimate of the therapeutic
effect. As described in more detail in Ref. (23), it is
possible to test if the difference (which may be considered
asatlærapeutir ind.ex) is signifrcantly different from zero
by comparing the difference with its standard error (es-
timatcd from the variance-covariance matrix of the coef-
frcients) (23). In this way, it may be possible to identify
patients having a signifrcantly beneficial effect, a signif-
icantly harmful effect and no significant effect of the
treatment given (23).

TIME-DEPEhIDENT COX REGRESSION MODEL

The preceding methods have utilized covarying vari-
ables at the beginning of follow-up, usually at the time
of diagnosis or randomization in a controlled clinical
trial. However, in a patient with cirrhosis, for example,
the clinical situation may rapidly change for better or
worse, e.9., prognosis may improve if the patient stops
drinking alcohol (22,34-36) or it may become worse if
gastrointestinal bleeding occurs (4, 30). Estimates of
prognosis seem to be imFroved if such changes occurring
during the course of the disease are taken into account
(22\.

The Cox rcgression model for time-fired variables
previously described can be generalized to the case of
time{ependent variables (6), where eæh variable zi is
no longer constant (equal to the value at the start of the
shldy), but is allowed to vary as a function of time t after
entry into the study: q(t). Consequently, the hazard of a
given patient is allowed to vary corresponding to the
variation in time of the predictor variables. If, for ex-
ample, a patient develops gastrointestinal bleedi n g, ha, -
ard is likely to increase; if the bleeding can be effectively
treated, hazard is tilely to decrease (22).

A PI based on the time-dependent model may be
estimated repeatedly during the course of the disease to
update estimates of the prognosis (22). lt may be well-
suited for clæe monitoring, e.g., beforc liver transplan-
tation to insrc optimal timing of the procedure (37).
For further details on the time-depen&nt Cox model,
the reader is referred to Ref. (22).

PERFONMING COX REGRESSION AIYALYSES-
HOW AND WEEN

The Cox regtession model and other related methods
fs1 annlysis of survival data have been reviewed by Lee
(38) and Kalbfleisch and Prentice (7), who also present
computer programs in FORTRAN to perform time-frxed
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and time-dependent Cox regression analyses. A number
of commercial standard programs for Cox regression
analysis are available, for example BMDP 2L (39) and
PROC PHGLM (16). However,'because of the complex-
ity of the Cox regression analyses and the necessity of
carefuIly checking model assumptions, the analyses
should preferably be performed with the close coopera-
tion of a qualified statistician.

The power of a Cox analysis depends largely on the
number of events or endpoints in the data set (7). To
reduce the risk of finding spurious associations, one
should limit the number of predictor variables to be
investigated. Harrell (16) recommends that the number
of predictor variables examined should not be more than
about 5 to l0% of the number of endpoints. Thus, for a
data set as'that presented in this paper, one should only
examine I to 2 predictor variables to insure that the
results would be reasonably confident. Therefore, the
analyses presented in this paper should be taken for
nothing more than illustrations of the "dynamics" of Cox
analyses.

It must be realized that the variables frnally included
in a Cox regression model is dependent on the way and
order of selection (e.g., forward selection or backward
elimination), and the variables which have actually been
recorded and thus are available for analysis. This may
explain why models on comparable groups of patients
may differ in regard to which variables have been found
signifrcant and which have not. Such differences are only
to be expected. Thus, the regression model frnally ob-
tained is not unique. In many instances, slightly different
models might have been obtained with nearly the same
degree of prognostic information.

In multivariate analyses, including Cox regression
analyses, some variables may randomly be found to have
a significant prognostic or therapeutic association (a0).
This problem will increase with the number of variables
analyzed and hence the number of statistical tests per-
formed. Therefore, it is important to evaluate the results
in the light of common clinical knowledge and biologic
principles to see if the results are "reasonable."

The usefulness of the model obtained should be judged
from its predictive power and the ease with which the
variables included can be obtained. The latter will highly
influence its applicability in clinical practice.

The Cox model should be used only il the number of
subjects having an endpoint is sufficient in relation to
the number of predictor variables being planned to ana-
lyze and if the assumption of proportional hazards can
be fulfrlled. If the latter is not the case, one should not
use the Cox model but simpler, less restrictive methods
based on stratification (9), although such methods can
accommodate only a few predictor variables at a time.
When reporting Cox analyses, one should describe care-
fully how model assumptions were checked. Reports
omitting these details should be considered with skepti-
cism.

VALIDITY OF RESULTS OBTAINED BY COX
REGRESSION ANALYSIS

Like other powerful multivariate statistical analyses,
the Cox regression analyses should be considered explo-

rative or heuristic. Usually, the results obtained need to
be validated before they can be considered "proved" (41).
The best way of validating the results is to demonstrate
that the obtained statistical model can predict prognosis
correctly in independent subjects (13). Ifpn independent
group of subjects is not available, a validation in a more
limited sense may be performed using a split-sample
testing technique (13, 17, 22,'42). With this method, the
obtained statistical model is estimated using one portion
of the subjects. With this model, the survival for the
remaining subjects is predicted. Then, the predicted sur-
vival is compared with the survival actually observed for
that portion to see if prediction is satisfactory or not
(17 , 22). However, the ultimate test is the correct predic-
tion of prognosis in new subjecfs.

CONELUSIONS

obtained (13, 17, 22, 23, 42, 4B). These results allow a
more precise estimation of the therapy-dependent prog_
nosis in the individual patient. Thus, a more individuål
treatment strategy based on the characteristics of the
patients becomes possible.

The Cox model is gsmFlex and may be difficult to
understand, but this should not Iead to its abandonment

To promote understanding and an increased use of the
Cox regression model, a closer cooperation between doc-
tors and statisticians is necessary. This will also stimu-
late the development of new statistical tools with a high
degree ofutility in clinical practice.
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