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In recent years, the Cox regression model has been 
used increasingly for analysis of censored survival data. 
With this model, the pattern of association (covariation) 
of many predictor variables with survival is analyzed to 
identify the combination of variables which best predicts 
survival. The results can be presented as a “pocket 
chart,” by which a prognostic index for a new subject 
can easily be obtained. By a simple graph, the prognostic 
index can be translated to estimates of the probability of 
surviving a given time or the median survival time pre- 
dicted for the subject. In controlled clinical trials, the 
Cox model can be used to adjust for imbalance in vari- 
ables influencing prognosis and to identify variables 
being associated with the treatment effect (therapeutic 
variables). This paper describes in rather simple and 
practical terms some of the concepts behind the model, 
how to perform the analyses and how to interpret and 
utilize the results. 

SURVIVAL ANALYSIS 
Like everything else, diseases develop and progress in 

time. Description of the course in time is an important 
aspect in the characterization of diseases, including their 
prognosis and the effects of therapies. However, a de- 
tailed description of the course of disease may be complex 
(1-4). Accordingly, the problem has been dealt with in 
simpler terms, namely by analyzing for each individual 
the time from a defined starting point, e.g., the time of 
diagnosis or randomization in a controlled clinical trial, 
to the occurrence of an event or endpoint of interest, 
traditionally death as in survival analysis ( 5 ) .  In princi- 
ple, the first occurrence of other events such as compli- 
cation, freedom of symptoms, recurrence of symptoms, 
diastolic blood pressure > 110 mm Hg, hemoglobin < 6 
mmoles per liter, etc., may be defined as an endpoint for 
the subject and analyzed in a similar way (3 ,5) ,  although 
a precise registration of the time at  which the event takes 
place may be difficult. 

Since investigations have a limited duration, some 
subjects may not yet have had the event, but are still 
“alive” at  the end of the investigation. Other subjects, 
while alive, may have dropped out for various reasons 
during the study without the event having occurred. Such 
“incomplete” survival times from the starting point to 
the latest observation, so called censored survival times, 
which hold the information that the event did not occur 
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while the individual was being observed, are utilized 
along with the “complete” survival times in the Cox 
regression model (6) and other recent methods for analy- 
sis of survival data (7). 

Table 1 presents a constructed set of survival data 
which will be used for illustration in this paper. The data 
set includes 30 subjects, of whom 18 have a complete 
observation time with an endpoint, and 12 have a cen- 
sored observation time without an endpoint. The values 
of the variables presented (albumin, bilirubin and alco- 
holism) apply to the beginning of the follow-up period. 

THE SURVIVAL CURVE 
The established way of presenting survival data is to 

estimate the survival curve. If all of the survival times 
are complete, i.e., without censoring, the survival curve 
is estimated simply as the proportion of individuals in 
whom the event has not yet occurred at  each point of 
time during the observation period. For survival data 
which includes censored survival times, the survival 
curve may be estimated by the method described by 
Kaplan and Meier (8) and illustrated by examples from 
Pet0 et al. (9). By including the censored survival times, 
that method gives a useful estimate of the probability of 
not having the event (i.e., to survive) as a function of 
time. Since this probability is a function of the probabil- 
ity of surviving, all time intervals from start to a given 
time t are denoted by the term cumulative survivalprob- 
ability, which is commonly designated S(t), The esti- 
mated cumulative survival probability curve S(t) for the 
total group of individuals presented in Table 1 is shown 
in Figure 1 (top panel). 

HAZARD 
The more recent methods for analysis of survival data, 

including Cox regression analysis (6-7, lo), are based on 
the instantaneous hazard (also called the force of mor- 
tality) designated X(t), which is the risk that the event 
will occur for a subject in a small time interval (At) at 
time t, given the subject did not have the event before 
that time. Since the hazard X ( t )  is the derivative of the 
cumulative (integrated) hazard designated A(t)  (7), it can 
be illustrated by the slope of the latter. Because the 
relation A(t)  = -log,S(t) (7), the cumulative hazard may 
easily be estimated by taking the negative natural loga- 
rithm of the corresponding cumulative survival proba- 
bility estimates. 

The estimated cumulative hazard curve A(t) of the 
survival data in Table 1 is shown in the bottom panel of 
Figure 1. A steep rise in that curve corresponds to a high 
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TABLE 1. Constructed set of survival data 

Subjeet Survival time Death (1) or Albumin Bilirubin Alcoholism 
[present (l)/absent (O) ]  no. (days) censoring (0) (gmfliter) (rmolesfiter) 

1 17 1 24 332 1 
2 23 1 23 157 1 
3 39 1 22 182 1 
4 45 1 24 I7  1 
5 56 1 2 1  92 1 
6 69 1 26 143 0 
7 80 1 26 32 1 
8 98 1 21 249 1 
9 120 1 29 72 0 

10 134 1 29 220 1 
11 152 0 32 89 1 
12 163 1 29 152 0 
13 189 1 28 43 1 
14 205 1 31 82 0 
15 231 0 27 39 0 
16 252 0 31 63 1 
17 311 1 31 98 0 
18 337 0 28 41 0 
19 390 1 33 68 1 
20 457 1 31 25 1 
21 488 0 34 51 1 
22 560 1 33 57 0 
23 633 0 34 70 0 
24 692 0 35 39 0 
25 809 0 32 32 0 
26 912 1 34 67 0 
27 1,046 0 33 52 0 
28 1,298 0 33 20 0 
29 1,437 0 36 28 0 
30 1,562 0 35 19 0 

Note: the recordings for albumin, bilirubin and alcoholism apply to the beginning of the follow-up period. 

C U W L A T I V E  SURVIVAL PROBABILITY 
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FIG. 1. Estimated cumulative survival probability sit) [ Kaplan- 
Meier plot (811 (top) and estimated cumulative hazard A(t)  (bottom) 
for the survival data presented in Table 1. One can esttrnate the one 
from the other using the relations: A(t) = -loGS(t) and S(t) = e-,’(”. 

hazard, a slight rise to a low hazard. It appears from the 
curve that the hazard is high initially and less thereafter. 

A cumulative survival curve and the cumulative hazard 
curve derived from it are summarizing descriptions con- 
cerning the studied total group of individuals. However, 
there may be a wide variation in the survival time (and 
hazard) between individual subjects. Although the curves 
illustrate the variation among the subjects, they do not 
allow identification of who had a long survival (low 
hazard) and who had a short survival (high hazard). 

COVARIATES 
To make such an identification possible or to allow 

prediction of survival time in individual subjects, it is 
necessary to identify and utilize variables couarying with 
survival. For example, it may be that serum albumin at 
the starting point covaries with the subsequent survivai 
time; i.e., in subjects with a low albumin, the survival 
time may be short (hazard high), and in subjects with a 
high albumin, the survival time may be long (hazard 
low). If the covariation (or correlation) between the level 
of albumin and the survival time is large, the level of 
albumin may to some degree “explain” the variation in 
survival time or hazard between the subjects (11). In that 
case, the level of serum albumin in a new subject may to 
some degree be used to predict his/her survival time or 
hazard. In a controlled clinical trial, the treatment given 
may be an important covariate which may “explain” a 
difference in survival between the treatment groups. 
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FIG. 2. Cumulative survival probability for the data presented in 
Table 1 in subgroups defmed according to the level of serum albumin: 

32 gm per liter; and - - - - = albumin > 32 gm per liter. The difference 
in survival between the groups is marked, indicating that the level of 
albumin to some degree can predict survival. 
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COMPARISON OF SUBGROUPS (STRATA) 
Thus, the simplest way to identify prognostic co- 

variates is to divide the subjects in subgroups (strata) 
according to different levels of a given variable. For 
example, if we divide the subjects presented in Table 1 
according to the level of albumin (e.g., albumin < 28, 28 
to 32 and >32 gm per liter), it can be shown in Figure 2 
that the survival curves for these three groups are mark- 
edly different. In a similar way, one can show for the 
subjects presented in Table 1 that the survival curves 
are different in subgroups defined according to the level 
of bilirubin or the presence or absence of alcoholism. 

Normally, a single variable, even if it shows a strong 
covariation with survival, will not completely “explain” 
survival. Usually, it is to be expected that more variables 
in combination may “explain” survival to a higher degree. 

It is possible to stratify according to more than one 
variable a t  a time (3, 9). However, with an increasing 
number of strata, the number of subjects in each stratum 
will rapidly decrease to such an extent that the corre- 
sponding survival curves will have too little “confidence” 
[the curves will have too wide confidence limits (9)] to 
be of any value. Hence, in practice, stratified analyses 
can only be performed with one or few variables a t  a 
time. This puts a serious limitation on stratification. 
However, the method may be used for a crude screening 
to identify variables which should be analyzed further in 
a Cox regression model. 

COX REGRESSION MODEL 
The regression model proposed by Cox (6) is a multiple 

regression model for analysis of censored survival data. 
Provided that the more strict assumptions (described 
later) of this model may be considered fulfilled, it may 
be used to study and utilize the pattern of covariation of 
many variables with the hazard. The Cox regression 
model has this form: 

X(t ,  z) = b(t) exp(blzl + . . . . + bizi + . . . + bpg), 

Thus X(t, z), the hazard at time t after a defined 
starting point [diagnosis, randomization etc. (being time 
zero)] for an individual with variables z = (zl- . zi- - ‘z,) 

is being “dependent on” or “explained” or “predicted” by 
Xo(t), the so-called underlying hazard at time t, and the 
predictor variables z1 to z, (recorded at  time zero), each 
variable zi being multiplied by a corresponding regression 
coefficient bi. Here, exp stands for exponential function, 
e.g., exp(bz) = ebz. The underlying hazard Xo(t) may be 
considered a “reference” hazard from which the hazard 
X(t, z) at time t of given subject may be obtained by 
multiplication with a factor, namely the exponential 
function of the subject’s variables “weighted” by the 
regression coefficients. Formally, the underlying hazard 
X,(t) is the hazard at  time t of an individual whose zi’s 
are all zero. Usually, Xo(t)  is of little interest in itself, 
since it may depend on the scoring of the variables (7). 

Thus, the Cox model assumes that the hazards of any 
two patients are proportional over time, i.e., the ratio 
between the hazards is the same a t  any time t. This does 
not preclude that the hazard may change over time. 
Often, the hazard will be relatively high soon after the 
time of diagnosis and thereafter it may decrease as in 
Figure 1. However, the Cox model assumes that changes 
in the hazard of any patient over time will always be 
proportional to changes in the hazard of any other pa- 
tient and to changes in the underlying hazard over time. 

The amount by which each predictor variable zi con- 
tributes to the prediction of the hazard X ( t ,  z) of an 
individual depends on the magnitude of the correspond- 
ing term bizi. If the term is numerically big, then the 
contribution is big; if the term is numerically small (close 
to zero), then the contribution is small. 

Consider a Cox model including only one variable and 
having an underlying hazard A,( t) of A years -’ at a given 
time t. If the variable z1 has the value (score) 2 in one 
subject and 1 in another subject, bl being 0.5, then the 
model assumes that the ratio between the hazards of the 
two patients is 

(A x e0.5 X Z)/(A x eO.S X I )  = (e0.5 X 2 )/(e”.” I )  = e0.5 = 1.65. 

This ratio is assumed to be constant over time; it is 
independent of the actual value A of Xo( t )  which may 
change with the time t. 

If bi had been -0.5, then the ratio would have been 

(A X e-’.‘ 2)/(A X e-”..“ I )  = e-O.’ = l/e0.5 = 1/1.65 = 0.61. 

Thus, higher values (scores) of zi indicate higher hazard 
(shorter survival) if bi is positive and vice versa if bi is 
negative. If bi = 0, then zi has no influence on the hazard. 

FITTING A COX MODEL TO A SET OF DATA 

The estimation of the b coefficients and the underlying 
hazard in the Cox regression model is complex. The 
statistical and computational details are described in the 
literature (6, 7, 12). However, to perform Cox analyses 
using available standard computer programs (see later 
data), knowledge of these details is not necessary. 

The procedure is illustrated by performing a Cox 
regression analysis on the data presented in Table 1. In 
the analysis, serum albumin will be scored by its value 
in grams per liter and alcoholism as 1 if present and 0 if 
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TABLE 2. Seven Cox regression analyses of the data set presented in Table 1” 

Variable(s) Regression N.D. P 
coefficient SEC) [b/SE(b)] coefficient b included x*model d.f. p model R= no. 

1 30.99 1 <0.0001 0.28 Albumin -0.42 0.089 -4.71 <0.0001 

2 21.24 1 <O.oOOl 0.18 Log,, bilirubin 4.44 1.06 4.17 <0.0001 

3 8.79 1 0.003 0.06 Alcoholism 1.55 0.55 2.82 0.005 

4 35.89 2 t0.0001 0.30 Albumin -0.35 0.10 -3.43 0. o006 
Loglo bilirubin 2.36 1 . 1 1  2.12 0.03 

5 32.50 2 <0.0001 0.27 Albumin -0.39 0.094 -4.16 <0.0001 
Alcoholism 0.79 0.64 1.23 0.22 

6 25.13 2 <0.0001 0.20 Log,, bilirubin 3.88 1.06 3.66 0.0002 
Alcoholism 1.14 0.59 1.93 0.056 

7 37.04 3 <O.OOOl 0.30 Albumin -0.32 0.11 -3.07 0.002 
Log,, bilirubin 2.25 1.11 2.03 0.04 
Alcoholism 0.71 0.66 1.08 0.28 

~~ ~ ~ ~~ ~~ 

Models 1 to 3 include one predictor variable, Models 4 to 6 include two predictor variables and Model 7 includes three predictor variables. 

absent. Serum bilirubin will be scored by loglo of the 
values in pmoles per liter as in a previously published 
study (13). For example, if serum bilirubin is 92 pmoles 
per liter, it will be scored as 1.98227 . . . . Later, it will 
be shown if this scoring is adequate. 

As in simple multiple regression analysis (14), vari- 
ables may be selected according to certain procedures 
(forward selection or backward elimination). To illus- 
trate how this works (the details will be explained in the 
following), Table 2 presents the results of seven Cox 
analyses comprising all possible combinations of the 
three variables in Table 1, i.e., three including only one 
variable (Models 1 to 3), three including two variables 
(Models 4 to 6) and one including all three variables 
(Model 7). 

OVERALL SIGNIFICANCE OF THE MODEL 
(LIKELIHOOD RATIO TEST) 

Estimation and significance testing of a given Cox 
model involves the concept of likelihood, meaning the 
probability of the observed data being “explained” by a 
certain model. 

The overall significance of each model shown in Table 
2 is based on the ratio between the likelihood of a model 
in which the variables show no covariation with the 
survival time, the b coefficients all being zero, L(O), and 
the likelihood of the model with the b coefficient(s) 
obtained by the analysis, L(b) (7), the b coefficient(s) 
being estimated in such a way that L(b) is as great as 
possible. Thus, the estimated parameters (the underlying 
hazard and the coefficients) of a Cox model are so-called 
“maximum likelihood estimates” (7). The greater the 
L(b) or the less the likelihood ratio L(O)/L(b), the better 
the model actually “explains” or fits the observed data 
(7). The significance of each model can be tested statis- 
tically using the relation 

with degrees of freedom (d.f.) being equal to the number 

of coefficients estimated in the model (7). While l o ~ L ( 0 )  
is the same for all of the models, i.e., -52.319, L(b) and 
hence the x 2  model depend on the variableb) included. 
For example, for Model 1, log, L(b) is -36.825, and the 
x2 model = 2[-36.825 - (-52.319)] = 30.988 = 30.99 as 
shown in Table 2. This high x 2  value with 1 d.f. is highly 
significant. Considering the three models in Table 1, 
including only one variable (Models 1 to 3), it appears 
that the highest x 2  model is provided by Model 1, which 
therefore has the greatest significance of those three 
models. 

INFORMATION CRITERION FOR A COX MODEL 

In Table 2 is also shown R2, which has been proposed 
as a counterpart to the coefficient of determination of 
simple multiple regression analysis (15, 16). R2 for a Cox 
model may be estimated as ( x 2  model - 2 X p)/[-2 X 
logeL(O)], where p is the number of variables in the model 
(15). The subtraction of 2 x p is made to adjust for the 
number of parameters being estimated (15, 16). As in 
simple multiple regression analysis, R2 lies between 0 
and 1. If R2 is 0, the model is of no value. The closer R2 
is to being 1, the more perfect the hazards of the individ- 
uals can be “explained” by the model. Because of the 
adjustment, R2 can never be exactly 1. In Table 2, the 
model having the highest R2 is Model 4. Thus, Model 4 
“explains” best the hazards of the individuals. However, 
the value of R2 for that model is only 0.30, indicating 
that the fit is far from perfect. 

SIGNIFICANCE OF EACH INCLUDED VARIABLE 

For each variable in each analysis, Table 2 presents 
the regression coefficient b and the standard error of b 
[SE(b)], which indicates the “confidence” of the esti- 
mated b value and may be used to estimate confidence 
limits of b. As shown in the table, the significance of 
each coefficient can be estimated by comparing the nor- 
mal deviate, N.D. = b/SE(b), with the standardized 
normal distribution (7). Identical results are obtained by 
comparing the square of the normal deviate, i.e., N.D.2 
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with the x2 distribution with 1 d.f. {the so-called Wald 
test [sometimes presented in computer printouts (IS)] 1. 

The relative importance of the variables is given by 
the numerical value of N.D. The greater the numerical 
value of N.D., the more significant it is in the model. 
Considering Model 7 in Table 2, the importance of the 
variables decrease in this order: albumin; loglo bilirubin 
and alcoholism (the latter being insignificant). 

RELATIVE RISK (HAZARD) PREDICTED BY 
EACH REGRESSION COEFFICIENT 

From the regression coefficient b of a variable, it is 
possible to estimate relative risks (ratios between haz- 
ards) attributable to various levels of that variable, all 
other variables being unchanged. Considering the di- 
chotomous variable alcoholism, Model 3 predicts the 
relative risk of alcoholism to nonalcoholism being 

In Model 4, a 1 gm per liter lower concentration of 
serum albumin (e.g., 29 gm per liter relative to 30 gm per 
liter) will be associated with a relative increase in hazard 

expression shows that the relative risk being associated 
with a 1 gm per liter lower albumin is independent of the 
absolute level of albumin. A 3 gm per liter lower albumin 
is associated with a 1.42 X 1.42 x 1.42 = 1.423 = 4.26 
times higher risk, and a 2 gm per liter higher albumin is 
associated with a halved risk [1/(1.42 X 1.42) = 1/1.42' 
= 1.42-' = 0.501, everything else being unchanged. 

Looking at  bilirubin in Model 4 in the same way, a 
doubling in values (e.g., 100 compared to 50 pmoles per 
liter) corresponding to an increment in loglo bilirubin of 
0.3 (2.0 compared to 1.7) is associated with a risk being 

/e . - e .  . imes higher or doubled, 
everything else being unchanged. It is possible to obtain 
relative risks attributable to more variables in combina- 
tion by multiplying the relative risks attributable to each 
variable in the model. The same result may be obtained 
more simply as the ratio between the exponential func- 
tions of the prognostic indices (see later) corresponding 
to the two sets of values of the variables considered. 

The limitation of the relative risk in itself is that it is 
just relative and does not give an absolute estimate of 
the survival time or probability of surviving a given span 
of time for a given subject. 

4.7/1 = 4.7. X 1/e1.55 X 0 = 

of e-0.35 X 29/e-0.35 X 30 = e-0.35 X (-1) = 1 . 42 t imes. The latter 

e2.36 x 2.0 2 36 X 1.7 - 2 36 X 0.3 = 2 0 t 

SELECTION OF VARIABLES 

With the forward selection method, the model is built 
up step-wise by including at  each step the variable giving 
the largest reduction in the likelihood ratio or equiva- 
lently the largest increase in the x2 model. Thus, in the 
first step, albumin (Model 1 in Table 2) would be in- 
cluded because this variable gives the highest significant 
x2 model of all possible models with one variable (Models 
1 to 3). In the next step, loglo bilirubin would be added 
(Model 4) because this variable increases the x2 model 
significantly (35.89 - 30.99 = 4.90 with 1 d.f., p < 0.05) 
in contrast to alcoholism (Model 5), which only gives an 
insignificant increase in the x2 model (32.50 - 30.99 = 
1.51 with 1 d.f., p > 0.2). (Here, d.f. is the difference 
between the number of estimated coefficients in the 

models being compared.) Inclusion of alcoholism in a 
model comprising albumin and loglo bilirubin (Model 7) 
does not lead to a significant increase in the x2 model 
(37.05 - 35.89 = 1.15 with 1 d.f., p > 0.2). Therefore, 
Model 4 would be the final model if the forward inclusion 
technique was used. 

Utilizing the backward elimination method, one starts 
with a model which includes all variables, and then 
insignificant variables are removed step-wise from the 
model by excluding the most insignificant variable a t  
each step until each remaining variable contributes sig- 
nificantly to the model. Thus, one would start with Model 
7 and then remove alcoholism because this variable is 
insignificant. This would lead to Model 4, which would 
be the final model because both variables (albumin and 
loglo bilirubin) are statistically Significant. 

For the data in Table 1, forward selection and back- 
ward elimination of variables lead to the same final 
model. In more complex analyses, including many vari- 
ables, the two methods of selection of variables may lead 
to slightly different final models. Normally, the selection 
of variables should not be made solely according to 
automatic rules. The selection process should be guided 
by the investigator taking into account, among other 
things, the a priori prognostic value of each variable 
considered. 

INFLUENCE OF COVARIATION BETWEEN 
PREDICTOR VARIABLES 

In general, the pattern of covariation between the 
predictor variables will, to some extent, determine which 
will be significant in the final Cox regression model. It 
is not always possible from the results of univariate 
analyses (including only one variable, e.g., Models 1 to 3 
in Table 2) to predict which variables will be significant 
in a Cox regression model, including more variables (17). 
If two variables, each of which has shown a significant 
covariation with survival time by univariate analysis, are 
strongly intercorrelated, and therefore holding nearly the 
same information, only one of them may be significant 
if both are included in the model. On the other hand, a 
variable which has shown no significant covariation with 
survival if included as the only variable may be signifi- 
cant if included together with other variables. The reason 
for this is that multivariate-in contrast to univariate- 
statistical analyses can adjust for the influence (covar- 
iation) of other variables with the variable in question. 

Furthermore, the magnitude of the regression coeffi- 
cient and the degree of significance of each included 
variable depend on which other variables are also in- 
cluded in the model as shown in Table 2. For example, 
by comparing Models 3 and 5, it appears that alcoholism 
is significant if it is the only variable in the model (Model 
3); but if albumin is also included (Model 5), the influence 
of alcoholism is no longer significant. Furthermore, the 
value of the b coefficients changes from the models, 
including one variable to the model having both variables 
[b for albumin changes from -0.42 (Model 1) to -0.39 
(Model 5) and b for alcoholism changes from 1.55 (Model 
3) to 0.79 (Model 5)]. The reason for these differences is 
the covariation between the predictor variables (in this 
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case between albumin and alcoholism). This covariation 
is adjusted for in the Cox model, so that only the inde- 
pendent association of each variable with the hazard is 
presented in the estimated model. 

If, however, the covariation between two or more pre- 
dictor variables is very strong (collinearity), the esti- 
mated regression coefficients may be affected so much 
that the results may no longer be interpreted in a simple 
meaningful way. The solution will often be to include in 
the model only one variable from the highly correlated 
set (14). 

CHECKING OF MODEL ASSUMPTIONS 
This is an important but difficult aspect of Cox regres- 

sion analyses, where a close cooperation with a qualified 
statistician is well-justified. For a more detailed descrip- 
tion, the reader is referred to the book of Kalbfleisch and 
Prentice (pp. 87-98) (7) and Refs. (20) and (21). Here, 
the main principles will be illustrated. 

The most important issue is insuring that the assump- 
tion of proportional hazards is not violated. Consider 
two patients (A and B), who for a given predictor variable 
have the values ZA and zB, respectively, the difference 
zA-zB being equal to d. If the regression coefficient of 
the variable in question is b, the Cox model predicts that 
the ratio between the hazards of the two patients X A ( t ) /  
A&) should be eb d, keeping the other variables un- 
changed. This ratio should be constant, irrespective of 
time t and values ZA and ZB of the predictor variable 
being high or low. Under the assumption of proportional 
hazards, the corresponding proportion between the cu- 
mulative (integrated) hazards would be the same, i.e., 

h( t ) /Adt )  = eb x d  or equivalently lo&AA(t) - log&(t) = b x d. 

Thus plots of the logarithm of the cumulative hazards 
corresponding to values differing by d (all other variables 
being unchanged) should be parallel and approximately 
b X d apart vertically (independent of time t) (7, 17-19). 

In practice, checking the assumption of proportional 
hazards is done for each predictor variable at a time by 
a stratified analysis where the predictor variable in ques- 
tion is only defining a small number of strata but 
otherwise not included. The defined strata should be 
equally spaced, i.e., the spacing d between the means of 
the scored values from one stratum to the next should 
be approximately the same. In the analysis, regression 
coefficients (common for all strata) for the remaining 
variables are estimated. From such a model, one can plot 
the logarithm of the cumulative hazard against time for 
each of the strata, keeping the values of the other vari- 
ables constant. If the curves are approximately parallel 
and equidistant vertically with a distance of about b x 
d, then the assumption of proportional hazards may be 
considered to be met for that variable. 

To check the final model (Model 4 in Table 2), such 
analyses have been performed where one of the variables 
(albumin or log,, bilirubin) have been included only as a 
stratified variable in equally spaced strata and the other 
maintained unchanged in the model. The resulting plots 
of the logarithm of the cumulative hazard are shown in 
Figures 3 and 4. The fit seems to be quite good for 
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FIG. 3. Plots of the logarithm of the cumulative hazard [Io&i(t)] for 
a Cox model including albumin in three equally spaced strata: - = 
albumin 5 27 gm per liter; . . . .  = 27 gm per liter < albumin 5 32 gm 
per liter; - - - - = albumin > 32 gm per liter and log,, bilirubin from 
the data in Table 1. The plots are made for the mean of log,, bilirubin 
(1.83). Since the means of albumin values for each stratum are about 
5 gm per liter apart, then d = 5. Since b for albumin is -0.35 (Model 4 
in Table 2), then b X d = -0.35 x 5 = -1.8. In view of the limited 
number of subjects, the assumption of proportionality, i.e., vertical 
equidistance of about 1.8 units between the curves, does not seem to 
be grossly violated. 
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FIG. 4. Plots of the logarithm of the cumulative hazard [lo&i(t)] for 
a Cox model including log,, bilirubin in three equally spaced strata: 

- log,, bilirubin 5 1.7; . . . .  = 1.7 < log,, bilirubin 5 1.9; and 
- - _ _ _  - log,, bilirubin > 1.9 and albumin from the data in Table 1. 
The plots are made for the mean of albumin (29.5 gm per liter). Since 
the means of log,, bilirubin values for each stratum are about 0.34 
apart, then d = 0.34. Since be for log,, bilirubin is 2.36 (Model 4 in 
Table Z), then b x d = 2.36 x 0.34 = 0.8. In view of the limited number 
of subjects, the assumption of proportionality, i.e., vertical equidistance 
of about 0.8 between the curves, does not seem to be grossly violated. 

-- 

albumin and somewhat poorer for log,, bilirubin. How- 
ever, in view of the limited number of subjects included 
in the analysis, a very good fit may not be expected. 
Thus, the hypothesis of constant vertical differences 
between the curves cannot be rejected with this small set 
of data. To illustrate what would have happened if bili- 
rubin had been scored as pmoles per liter (without loga- 
rithmic transformation), Figure 5 shows that with that 
kind of scoring the curves do not seem equidistant. 
Therefore, the logarithmic scoring of bilirubin seems the 
preferable alternative in this case. Other transformations 
may be necessary in other cases. 

The assumption of proportional hazards may also be 
tested by the goodness of fit test by Andersen (20) or 
other similar tests (21). 

Sometimes, it may not be possible to obtain propor- 
tionality. One reason may be that an important predictor 



1352 CHRISTENSEN HEPATOLOGY 

LO6 CUMILLTIYE H I Z I R D  

r 

0 1 2 3 4 
YEIRS 

FIG. 5. Plots of the logarithm of the cumulative hazard [log&)] for 
a Cox model including bilirubin in three equally spaced strata: - = 
bilirubin 5 100 pmoles per liter; . . . . = 100 pmoles per liter < bilirubin 
5 200 pmoles per liter; and - - - - = bilirubin > 200 pmoles per liter 
and albumin from the data in Table 1. The plots are made for the mean 
of albumin (29.5 gm per liter). Since b for bilirubin without logarithmic 
transformation would be 0.0063 and since the means of the bilirubin 
values for each stratum are about 100 pmoles per liter apart, then d = 
100 and b x d = 0.0063 x 100 = 0.6. In contrast to Figure 4, the curves 
do not seem equidistant vertically with a distance of about 0.6, i.e., the 
assumption of proportionality does not seem to be fulfilled. 

variable is missing from the analysis. The solution would 
then be to include that variable if possible. Another 
reason for lack of proportionality may be that some 
predictor variables interact, i.e., the association of one 
predictor variable with the hazard depends on the value 
of another predictor variable. Interaction between pre- 
dictor variables may be identified by different methods. 
The most widely used approach is to include multiplica- 
tive terms in the model (14). For example, if the associ- 
ation of albumin with hazard depended on whether the 
individuals were alcoholic or not, this could be tested in 
a model including the following three variables: albumin; 
alcoholism, and the multiplicative term albumin x alco- 
holism (the product of the scorings used). Because the 
correlation between the interaction variable and its com- 
ponent predictor variables will often be quite high, prob- 
lems of collinearity leading to "distortion" of the regres- 
sion coefficients may arise. Furthermore, it would not be 
feasible to investigate all possible interactions between 
the predictor variables. One should limit the interaction 
analyses to those variables which a prwri may be sus- 
pected to interact. If it is not possible to fit a given 
variable to the proportional hazards assumption, the 
analysis may be performed stratified, the strata being 
defined by the variable in question (7, 16). 

UTILIZATION OF A COX REGRESSION MODEL 
TO ESTIMATE PROGNOSIS IN NEW SUBJECTS 

PROGNOSTIC INDEX (PI), ITS ESTIMATION 
AND INTERPRETATION 

The term in the Cox regression model by which the 
variables of the subject affect his/her hazard is 
blzl + . - - + bizi + . . + bpzp. Denoting this expression 
PI (13, 17, 22, 23), the Cox model equation is simplified 
to X(t, z) = Xo(t) epl. 

Estimation of PI for a given subject is the first step in 
estimating the prognosis of that subject. Considering 
Model 4 in Table 2 as the final model, the PI  for a subject 
with a serum albumin of 30 gm per liter and a serum 

bilirubin of 50 pmoles per liter, the PI  is estimated as 
follows: 

PI = -0.35 X 30 + 2.36 X log,, 50 = -0.35 X 30 + 2.36 X 1.7 = -6.5. 

It appears that higher levels of albumin will lead to 
lower levels of the first term and thus lower levels of PI 
because the regression coefficient for albumin is negative. 
In contrast, higher levels of bilirubin will lead to higher 
values of the second term and hence higher values of PI 
because the regression coefficient for bilirubin is positive. 

Higher values of PI  mean higher hazard or shorter 
survival, lower values mean lower hazard or longer sur- 
vival. Differences in PI  for two patients can be used to 
estimate their relative risk. A PI being 0.7 higher corre- 
sponds to a doubled risk (e0.7 per lite: = 2). A PI being 
0.7 lower corresponds to a halved risk (e-0.7 = 0.5); except 
for this, PI cannot be interpreted in a meaningful way 
by itself, since it depends on the scoring of the variables. 

The estimation of PI can be simplified markedly by 
using a pocket chart (22) as presented in Table 3 in 
which the regression terms for various values of the 
variables have already been calculated for Model 4 in 
Table 2. For example, for a bilirubin of 60 pmoles per 

TABLE 3. Pocket chart for easy estimation of PI 
corresponding to model 4 in Table 2 

Variable 

Bilirubin (pmoles/liter) 10 
14 
18 
25 
33 
45 
60 
80 

110 
150 
200 
270 
360 

Albumin (gm/liter) 

Points to be added (A) = 

20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
- 

Points to I Pointsto I 

Points to be subtracted ( S )  = I I 
A - S  

Note: for each variable, only one number should be used. If a 
patient has values between those in the table, interpolation should be 
Used. 
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TABLE 4. Ranked individual estimated values of PI based on 
model 4 in Table 2 

Subject no. Estimated PI 

8 
3 
1 
5 
2 
4 
6 

10 
12 
7 

15 
9 

13 
18 
17 
14 
11 
16 
19 
22 
27 
23 
20 
26 
25 
21 
28 
24 
29 
30 

-1.7 
-2.4 
-2.5 
-2.7 
-2.9 
-3.9 
-4.0 
-4.6 
-5.0 
-5.5 
-5.7 
-5.8 
-5.9 
-6.0 
-6.2 
-6.3 
-6.6 
-6.6 
-7.2 
-7.4 
-7.5 
-7.5 
-7.6 
-7.6 
-7.6 
-7.9 
-8.5 
-8.5 
-9.2 
-9.2 

liter, the regression term would be log,, 60 X 2.36 = 1.778 
X 2.36 = 4.2. In Table 3, this has been multiplied by 10 
to obtain the integer 42. Later, the result is divided by 
10 and thus a precision of PI of one decimal is obtained. 
By using a pocket chart of this kind, it is possible to 
estimate PI by very simple algebra. For example, for the 
aforementioned subject, PI may be estimated simply as 
(40 - 105)/10 = -6.5 or the same as before. 

Table 4 presents the PI according to Model 4 for each 
of the 30 subjects in Table 1. The PI  values ranging from 
-1.7 to -9.2 are ranked according to decreasing PI, i.e., 
increasing predicted survival. The ranking is of course 
not the same as in Table 1, although the subjects with 
lower PI (Table 4) tend to have longer observed survival 
times (Table 1) and vice-versa. 

Thus, the PI for a subject defines his/her place within 
the prognostic “spectrum” defined by the model. In the 
following, it will be shown how the information in PI 
may be utilized further in the estimation of a survival 
curve, the probability of surviving a given time and the 
median survival time for the subject. 

SURVIVAL CURVE ESTIMATE FOR THE 
INDIVIDUAL SUBJECT 

From a given Cox model, it is possible to estimate the 
cumulative survival probability or so-called survivorship 
function S(t, z) corresponding to any combination of the 
variables z = z1 - . . q,. Discussing hazard previously, the 

equation A(t, z) = -loGS(t,z) was presented. Solving for 
S(t, z) this becomes S(t, z) = e-A(t*”’. Following from the 
assumption of proportionality of the Cox model, A(t, z) 
= Ao(t) epl. Since h(t) is estimated in a Cox analysis for 
the whole range of time t from zero to the longest 
observation time, it is thus possible using these equations 
to estimate A(t, z) and then S(t, z), which is the estimated 
survival curve corresponding to a given value of PI or 
combination of variables z (13, 17, 23-24). 

Using Model 4 in Table 2, the estimated survival curve 
for each of the two subjects with given values of albumin 
and bilirubin is shown in Figure 6. 

Figure 7 (top panel) shows survival curves correspond- 
ing to different values of PI. The middle panel of Figure 
7 shows the cumulative hazard corresponding to the same 
values of PI. As a consequence of the assumption of 
proportionality of the Cox model, both the slope (the 
hazard) and the level increase with the same factor e’ = 
2.718, from one curve to the next above. In the bottom 
panel of Figure 7 showing the logarithm of the cumulative 
hazards, the curves are equidistant vertically with a 
distance of 1 (10g~2.718 = 1) between the curves. The 
shape of these curves is exactly the same; they are all 
based on the survival structure of the whole group of 
subjects (as are the curves in the upper and middle parts 
of Figure 7). The curves only differ in their level being 
determined by the value of PI. Accordingly, the logarithm 
of the cumulative underlying hazard logeho(t), which 
is equal to loGA(t) for a PI of zero, can be illustrated by 
a curve having exactly the same shape as these curves, 
but lying 4 units higher than the curve for a PI of -4. 

Methods for deriving point-wise confidence limits for 
estimated survival curves are given in Ref. (13). 

PROBABILITY OF SURVIVING A GIVEN TIME 

For given values of io(t) corresponding to a given span 
of time, e.g. 1 year, it is possible to estimate the value of 
S(t, z) corresponding to various values of PI  (13,17, 23). 
The estimation is performed using the same equations 
as in the previous section, the only difference being that 
here Ao(t) is kept constant for each curve, whereas PI is 
allowed to vary. Figure 8 has been constructed in this 
way. The reverse sigmoid shape of the curves is a con- 

CUlllLfiTIVE SURVIVlL PROBfiBILITY 
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FIG. 6. Estimated survival curves based on Model 4 in Table 2 for a 
subject having an albumin of 29 gm per liter and a bilirubin of 220 
pmoles per liter (log,, bilirubin = 2.342) (-) and a subject having an 
albumin of 33 gm per liter and a bilirubin of 20 pmoles per liter (log,, 
bilirubin = 1.3) ( .  . .  .). 
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FIG. 7. Estimated survival curves (top), estimated cumulative haz- 
ards (middle) and logarithm of estimated cumulative hazards (bottom) 
based on Model 4 in Table 2 for different values of the PI: - PI = 
-4; .... PI = -5 ... -PI  = -6 - - - - P I  = -7 and .. PI = -8. 
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FIG. 8. Estimated probability of surviving 0.5, 1 and 2 years by PI 
based on Model 4 in Table 2. 

sequence of the exponential functions involved. From a 
given value of PI on the abscissa, one can read the 
estimated probability of surviving 0.5, 1 and 2 years on 
the ordinate. For example, for a subject having a PI of 
-6, the probability of surviving 0.5, 1 and 2 years would 
be 0.76,0.45 and 0.08, respectively. 

ESTIMATED MEDIAN SURVIVAL TIME 
Another useful way of interpreting PI  is to estimate 

the median survival time for the subject. This is the span 
of time the subject will survive with 50% probability. For 
a subject having the variables z giving a certain PI, the 
median survival time is estimaJed as the time t for which 
the estimated survival curve S(t, z) reaches 0.5 (13, 17, 
23). A graph showing the estimated median survival time 
as a function of PI for Model 4 in Table 2 is shown in 
Figure 9. Each point of the curve is obtained in the 
following way: for a value of PI, a survival curve is 
estimated as previously described. The time t where the 
curve reaches a cumulative survival probability of 0.5 is 
the estimated median survival time corresponding to that 
PI. This is repeated for the whole range of possible PI 
values to obtain the whole curve. Since these estimations 
have not yet been included in the available standard 
computer programs, they have to be done by the inves- 
tigator. 

From a given value of PI on the abscissa in Figure 9, 
one reads the corresponding value of the estimated me- 
dian survival time on the ordinate. For example, for a 
subject having a PI of -6, the estimated median survival 
time would be 0.9 years. Since for PI values less than 
-7.8 the estimated survival curves do not reach 0.5, one 
can only say that the estimated median survival time 
will be longer than 4.3 years for such low values of PI. 

There is a close correspondence between Figures 7 
(upper part), 8 and 9. They illustrate the predictive 
information of the same Cox model in complementary 
ways. 

THE COX MODEL IN CONTROLLED CLINICAL 
TRIALS 

ADJUSTMENT FOR IMBALANCE 
In controlled clinical trials, randomization is per- 

formed with the purpose of eliminating bias in treatment 
assignment. This will tend to lead to comparable treat- 

SURVIVIL TIME <YEBRS> 
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FIG. 9. Estimated median survival time by PI based on Model 4 in 
Table 2. 
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ment groups. However, random allocation does not guar- 
antee complete balance. Imbalance in variables being 
known or suspected to covary with survival (prognostic 
variables) may occur randomly. If this happens, the 
“spontaneous” survival may be different between the 
treatment groups. Therefore, to insure a fair comparison 
between the studied treatments, imbalance in prognostic 
variables should be detected and adjusted for (25-29; 
Christensen, E. et al., Gastroenterology 1986; 90508-509, 
Correspondence). This can be done by performing a Cox 
regression analysis in which the prognostic variables are 
included together with the treatment variable (13). Even 
slight imbalance may have a marked influence on the 
result if the prognostic variable is very important (13, 
30). In such cases, there may be a substantial difference 
in the estimated therapeutic effect as obtained with and 
without adjustment for imbalance in prognostic variables 
(13, 30). 

To illustrate these points, consider the treatment al- 
location data in Table 5 to supplement the data in Table 
1. The Kaplan-Meier survival curves for the two treat- 
ment groups shown in Figure 10 are not significantly 
different, although the survival in the prednisone group 
tends to be longer than in the placebo group. Performing 
a Cox regression analysis, including the treatment vari- 
able together with albumin, log,, bilirubin and alcohol- 
ism, the model presented in Table 6 is obtained. In this 
model, the treatment as well as alcoholism are also 

TABLE 6. Constructed treatment allocation data to 
supplement the data in Table 1 

subject Treatment 
no. [prednisone (O)/placebo (l)] 

1 1 
2 1 
3 0 
4 1 
5 0 
6 1 
7 1 
8 0 
9 1 

10 0 
11 1 
12 1 
13 0 
14 1 
15 1 
16 0 
17 1 
18 1 
19 0 
20 1 
21 0 
22 0 
23 1 
24 0 
25 1 
26 0 
27 0 
28 0 
29 0 
30 0 
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FIG. 10. Unadjusted survival curves for prednisone (-) and pla- 
cebo ( . . . .)-treated subjects based on the treatment allocation data in 
Table 5 in combination with the survival data in Table 1. The difference 
in survival between the two groups is not significant. 

significant. Figure 11 shows the estimated survival curves 
for the two treatments adjusted for the influence of 
albumin, log,, bilirubin and alcoholism. The difference 
in survival is more marked and statistically significant. 
The main reason for this effect is that alcoholism is 
slightly more frequent in the prednisone (53%) than in 
the placebo group (40%), this difference being adjusted 
for by the Cox model. 

Although a powerful tool, statistical adjustment for 
the influence of prognostic variables cannot replace ran- 
domization. In general, only a smaller part of the varia- 
tion in the hazard between the individuals can be “ex- 
plained by the variation in the predictor variables in- 
cluded in a Cox regression model. A number of unknown 
not yet identified variables may be associated with the 
hazard. Still, the only way in which such variables may 
be modeled as being distributed equally between the 
treatment groups is randomization (31). Since, as men- 
tioned previously, randomization does not guarantee 
complete balance, it is important to continue the search 
for variables by which prognosis may be “explained” 
more precisely. 

QUANTIFICATION OF THERAPEUTIC EFFECT 
IN THE INDIVIDUAL SUBJECT 

In a Cox regression model, including the treatment 
variable together with the prognostic variables, it is 
possible to estimate for a given subject the PI for each 
of the treatments (13). Each of the PIS can be translated 
to an estimate of the median survival time as described. 
By subtracting the times for the treatments to be com- 
pared, the therapeutic effect can be expressed as the time 
(in months or years) by which survival may be prolonged 
(or shortened) by the one treatment compared to the 
other (13). 

VARIABLES ASSOCIATED WITH 
THERAPEUTIC EFFECT 

Just as almost any biological variable shows a spec- 
trum of variation between individuals, the relative hazard 
under various treatments may show a similar variation, 
depending on the characteristics of the subject. To iden- 
tify variables influencing the magnitude of the therapeu- 
tic effect, one may use a Cox model which allows for the 
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TABLE 6. Final Cox regression analysis of the data in Table 1 supplemented with treatment allocation data from Table 5 

N.D. P x s  model d.f. p model R’ Variables included Regression coefficient b SE(b) [b,SE(b)l coefficient 

<0.0001 46.59 4 <0.0001 0.37 Albumin -0.34 0.11 -3.01 
<0.0001 Log,, bilirubin 3.61 1.24 2.91 

Alcoholism 1.86 0.78 2.39 0.005 
Treatment 2.18 0.78 2.78 0.0006 
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FIG. 11. Adjusted estimated survival curves for prednisone (-) 

and placebo (. . . .)-treated subjects based on the Cox model in Table 6 
for mean values of albumin, log,, bilirubin and absent alcoholism (p = 
0.006). 

treatment given, other predictor variables characterizing 
each patient and the interaction between the treatment 
variable and the other variables (13,17,32,33). 

One useful way to design such a model is in addition 
to the treatment variable (e.g., scored as 0 for Treatment 
A and 1 for Treatment B) to include two regression terms 
for each of the other predictor variables, one for each 
treatment (17,23). For each pair of regression terms, the 
predictor variable should be scored by its usual scoring 
in the term corresponding to the treatment given to the 
subject and by zero in the other term. This leads to 
estimation of two regression coefficients bA and bB for 
each variable. If the difference between the two coeffi- 
cients is significant by comparison with its standard error 
(estimated from the variance-covariance matrix of the 
coefficients), one may assume that the treatment effect 
depends on the value of the variable, which should be 
considered “therapeutic” and maintained in the model 
with one coefficient for each treatment (17, 23). Other- 
wise, one coefficient bi common to the two treatments 
may be used instead. 

The standard error of the difference bA - bB, i.e., SE(bA - b,) = 
Jvar (b,) + var(bg) - 2 x covar(bAbs), var meaning the variance 
and covar the covariance being obtained from the variance-covari- 
ance matrix of the b coefficients (which is different from the vari- 
ance-covariance matrix of the predictor variables). If the ratio 
l(bA - bB)l/sE(bA - &) is higher than 1.96, ba and b~ are consid- 
ered significantly different at the 5% level (17, 23). If, for example, 
bA = 1.4, b~ = 0.6, var(bA) = 0.7, var (h) = 0.4 and COVar(bAba) = 
0.5, then I (bA - bB) l/SE(bA - b) = 0.8/0.32 = 2.5, and hence bA and 
bB are significantly different. These estimations are not included in 
the available standard computer program but need to be done by the 
investigator. The variance-covariance matrix of the b coefficients 
can be obtained from the computer printouts. 

The significance of the interaction between a variable 
and the treatment may also be tested using the likelihood 

ratio test (described previously) comparing the model, 
including both bA and bB with the model having only one 
coefficient b for the variable in question. 

For a model including one or more “therapeutic” vari- 
ables, the PI may be estimated for each of the treatment 
alternatives as described previously. The difference P1tr.A 

- PIt,B may be considered an estimate of the therapeutic 
effect. As described in more detail in Ref. (23), it is 
possible to test if the difference (which may be considered 
as a therapeutic index) is significantly different from zero 
by comparing the difference with its standard error (es- 
timated from the variance-covariance matrix of the coef- 
ficients) (23). In this way, it may be possible to identify 
patients having a significantly beneficial effect, a signif- 
icantly harmful effect and no significant effect of the 
treatment given (23). 

TIME-DEPENDENT COX REGRESSION MODEL 
The preceding methods have utilized covarying vari- 

ables a t  the beginning of follow-up, usually a t  the time 
of diagnosis or randomization in a controlled clinical 
trial. However, in a patient with cirrhosis, for example, 
the clinical situation may rapidly change for better or 
worse, e.g., prognosis may improve if the patient stops 
drinking alcohol (22, 34-36) or it may become worse if 
gastrointestinal bleeding occurs (4, 30). Estimates of 
prognosis seem to be improved if such changes occurring 
during the course of the disease are taken into account 
(22). 

The Cox regression model for time-fixed variables 
previously described can be generalized to the case of 
time-dependent variables (6), where each variable zi is 
no longer constant (equal to the value at the start of the 
study), but is allowed to vary as a function of time t after 
entry into the study: q(t). Consequently, the hazard of a 
given patient is allowed to vary corresponding to the 
variation in time of the predictor variables. If, for ex- 
ample, a patient develops gastrointestinal bleeding, haz- 
ard is likely to increase; if the bleeding can be effectively 
treated, hazard is likely to decrease (22). 

A PI based on the time-dependent model may be 
estimated repeatedly during the course of the disease to 
update estimates of the prognosis (22). It may be well- 
suited for close monitoring, e.g., before liver transplan- 
tation to insure optimal timing of the procedure (37). 
For further details on the time-dependent Cox model, 
the reader is referred to Ref. (22). 

PERFORMING COX REGRESSION ANALYSES- 
HOW AND WHEN 

The Cox regression model and other related methods 
for analysis of survival data have been reviewed by Lee 
(38) and Kalbfleisch and Prentice (7), who also present 
computer programs in FORTRAN to perform time-fixed 
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and time-dependent Cox regression analyses. A number 
of commercial standard programs for Cox regression 
analysis are available, for example BMDP 2L (39) and 
PROC PHGLM (16). However, because of the complex- 
ity of the Cox regression analyses and the necessity of 
carefully checking model assumptions, the analyses 
should preferably be performed with the close coopera- 
tion of a qualified statistician. 

The power of a Cox analysis depends largely on the 
number of events or endpoints in the data set (7). To 
reduce the risk of finding spurious associations, one 
should limit the number of predictor variables to be 
investigated. Harrell (16) recommends that the number 
of predictor variables examined should not be more than 
about 5 to 10% of the number of endpoints. Thus, for a 
data set as that presented in this paper, one should only 
examine 1 to 2 predictor variables to insure that the 
results would be reasonably confident. Therefore, the 
analyses presented in this paper should be taken for 
nothing more than illustrations of the “dynamics” of Cox 
analyses. 

It must be realized that the variables finally included 
in a Cox regression model is dependent on the way and 
order of selection (e.g., forward selection or backward 
elimination), and the variables which have actually been 
recorded and thus are available for analysis. This may 
explain why models on comparable groups of patients 
may differ in regard to which variables have been found 
significant and which have not. Such differences are only 
to be expected. Thus, the regression model finally ob- 
tained is not unique. In many instances, slightly different 
models might have been obtained with nearly the same 
degree of prognostic information. 

In multivariate analyses, including Cox regression 
analyses, some variables may randomly be found to have 
a significant prognostic or therapeutic association (40). 
This problem will increase with the number of variables 
analyzed and hence the number of statistical tests per- 
formed. Therefore, it is important to evaluate the results 
in the light of common clinical knowledge and biologic 
principles to see if the results are “reasonable.” 

The usefulness of the model obtained should be judged 
from its predictive power and the ease with which the 
variables included can be obtained. The latter will highly 
influence its applicability in clinical practice. 

The Cox model should be used only if the number of 
subjects having an endpoint is sufficient in relation to 
the number of predictor variables being planned to ana- 
lyze and if the assumption of proportional hazards can 
be fulfilled. If the latter is not the case, one should not 
use the Cox model but simpler, less restrictive methods 
based on stratification (9), although such methods can 
accommodate only a few predictor variables at a time. 
When reporting Cox analyses, one should describe care- 
fully how model assumptions were checked. Reports 
omitting these details should be considered with skepti- 
cism. 

VALIDITY OF RESULTS OBTAINED BY COX 
REGRESSION ANALYSIS 

Like other powerful multivariate statistical analyses, 
the Cox regression analyses should be considered explo- 

rative or heuristic. Usually, the results obtained need to 
be validated before they can be considered “proved (41). 
The best way of validating the results is to demonstrate 
that the obtained statistical model can predict prognosis 
correctly in independent subjects (13). If an independent 
group of subjects is not available, a validation in a more 
limited sense may be performed using a split-sample 
testing technique (13, 17, 22, 42). With this method, the 
obtained statistical model is estimated using one portion 
of the subjects. With this model, the survival for the 
remaining subjects is predicted. Then, the predicted sur- 
vival is compared with the survival actually observed for 
that portion to see if prediction is satisfactory or not 
(17, 22). However, the ultimate test is the correct predic- 
tion of prognosis in new subjects. 

CONCLUSIONS 
The Cox regression model is a powerful statistical tool 

for analysis of censored survival data. With this model, 
new information on variables associated with prognosis 
and therapeutic effect in chronic liver disease has been 
obtained (13, 17, 22, 23, 42, 43). These results allow a 
more precise estimation of the therapy-dependent prog- 
nosis in the individual patient. Thus, a more individual 
treatment strategy based on the characteristics of the 
patients becomes possible. 

The Cox model is complex and may be difficult to 
understand, but this should not lead to its abandonment 
and replacement by univariate analyses which disregard 
the pattern of covariation of other variables with prog- 
nosis and therapeutic effect. Instead, every effort should 
be taken to “translate” the results of analyses into sim- 
pler forms, such as “pocket charts” and diagrams to 
enable easy estimation of the therapy-dependent prog- 
nosis at the bedside in new patients. 

To promote understanding and an increased use of the 
Cox regression model, a closer cooperation between doc- 
tors and statisticians is necessary. This will also stimu- 
late the development of new statistical tools with a high 
degree of utility in clinical practice. 
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